个人简介

        王金凯是中山大学引进的教授,博士生导师。2005年毕业于武汉大学生命科学学院获得理学学士学位。2010年毕业于中国科学院昆明动物研究所获得遗传学博士学位(师从宿兵研究员)。2010年至2016年分别在美国爱荷华大学(2010~2012)和加州大学洛杉矶分校(2013~2016)邢毅教授实验室从事生物信息学方向博士后研究。2016年获聘中山大学引进人才。2018年入选广东省珠江人才计划“青年拔尖人才”。       
        目前已经以通讯作者或者(共同)第一作者身份在 Nature Communications (IF:17.7), Nucleic Acids Research(IF:19.2, 两篇)Nature Methods (IF: 47.9)、Cell Stem Cell (IF: 25.3)、Genome Biology (IF: 17.9, 两篇)等杂志发表论文11篇。

        主要研究兴趣是利用第二代以及第三代高通量测序技术结合生物信息学、基因组学和分子生物学的方法开发m6A修饰的检测技术和算法、研究m6A RNA修饰的调控模式和机理,及其在干细胞、肿瘤等重大生理病理过程中的作用。       

学术成果

重要学术研究成果与贡献

        m6A RNA甲基化是在mRNA和lincRNA中广泛存在并且可以被去甲基化酶清除的RNA修饰,在哺乳动物中,超过7000个蛋白质编码基因所转录的mRNA含有m6A甲基化修饰,然而这些m6A修饰的功能并不十分清楚。本人与合作者通过对哺乳动物胚胎干细胞的m6A组学以及功能研究发现m6A在胚胎干细胞中动态变化并且在干细胞分化中发挥了关键作用 (Cell Stem Cell, 2014)。为了系统鉴定在细胞命运决定中发挥关键作用的m6A位点,利用ABE单碱基编辑开发转录组水平的m6A位点功能筛选技术,系统鉴定了在人胚胎干细胞向内胚层分化过程中发挥关键作用的m6A位点。(Nature Communications, 2022)
        由于m6A的动态变化主要表现为甲基化程度的变化,而现有的技术都不能在基因组水平对m6A进行精确和绝对定量,也没有技术能够区分m6A发生在哪些特定的转录本异构体(isoform)上,技术上的欠缺严重阻碍了该领域的继续发展。本人与合作者通过对已有的m6A-seq技术的改进发明了第一种能够对m6A进行全基因组精确和绝对定量的方法(m6A-LAIC-seq)。我们通过新技术首次发现m6A广泛发生于使用近端Poly(A)加尾信号的mRNA上,m6A的这种全新的模式使得它能够与miRNA和RNA结合蛋白协同作用从而更加精细地对RNA进行转录后调控(Nature Methods, 2016)。

       为了进一步揭示m6A动态变化的机理,建立了一套基于m6A共甲基化网络的计算框架来系统地鉴定细胞特异的m6A反式调控因子。通过对目前公开的25个不同的细胞系的104个m6A-seq、上百个RNA结合蛋白的CLIP-seq数据和识别序列的系统性整合最终鉴定出32个特异性调控m6A的RNA结合蛋白。并对3个HepG2细胞系特异的m6A的调控因子中的两个成功进行了实验验证。揭示了大量RNA结合蛋白很可能通过特异性调控m6A参与建立细胞特异的m6A甲基化模式 (Nucleic Acids Research, 2020)。并详细研究了其中一个RNA 结合蛋白SRSF7,发现它通过特异性调控m6A促进胶质瘤的进展。(Genomics, Proteomics & Bioinformatics,2022

        为了回答相同细胞的不同基因如何形成特异性的m6A修饰,利用上述开发的m6A-LAIC-seq m6A定量技术比较假基因和同源的蛋白编码基因的m6A水平,发现假基因的m6A水平远高于同源的蛋白编码基因。进一步揭示加工型假基因在进化过程中在达尔文正向选择的驱动下快速积累产生m6A motif 的突变,从而造成加工型假基因的m6A水平显著高于同源的蛋白编码基因,进化出利用m6A降解加工型假基因的方式。这些进化出的m6A位点对于降解加工型假基因防止其通过ceRNA的机制干扰同源蛋白编码基因的表达调控网络发挥了重要作用。(Genome Biology, 2021)

学术论著与教材

 * 并列第一作者; # 通讯作者  本课题组成员或客座人员加粗显示

  1. Yu P*, Zhou S*, Gao Y, Liang Y, Guo W, Wang DO, Ding S, Lin S#, Wang J#, Cun Y# (2022), Dynamic Landscapes of tRNA Transcriptomes and Translatomes in Diverse Mouse Tissues. Genomics, Proteomics & Bioinformatics S1672-0229(22)00092-4 (IF=9.5)
  2. Sun X#, Wang DO, Wang J# (2022). Targeted manipulation of m6A RNA modification through CRISPR-Cas-based strategies. Methods 203:56-61(Invited review).
  3. Cheng W*, Liu F*, Ren Z, Chen W, Chen Y, Liu T, Ma Y, Cao N #, Wang J # (2022), Parallel functional assessment of m6A sites in human endodermal differentiation with base editor screens, Nature Communications 13:478 (IF=17.7) (BioArt 报道)
  4. Cun Y*, An S*, Zheng H*, Lan J, Chen W, Luo W, Yao C, Li X, Huang X, Sun X, Wu Z, Hu Y, Li Z, Zhang S, Wu G, Yang M, Tang M, Yu R, Liao X, Gao G, Zhao W, Wang J#, Li J# (2021), Specific Regulation of m6A by SRSF7 Promotes the Progression of Glioblastoma. Genomics, Proteomics & Bioinformatics S1672-0229(21)00252-7. (IF=9.5) 
  5. Tan L*, Cheng W *, Liu F, Wang DO, Wu L, Cao N, Wang J # (2021) Positive natural selection of N6-methyladenosine on the RNAs of processed pseudogenes. Genome Biology, 22:180. (IF=17.9) (BioArt 报道
  6. Wang J (2021). Integrative analyses of transcriptome data reveal the mechanisms of post-transcriptional regulation. Briefings in Functional Genomics elab004 (Invited review)
  7. Xia TL, Li X, Wang X, Zhu YJ, Zhang H, Cheng W, Chen ML, Ye Y, Li Y, Zhang A, Dai DL, Zhu QY, Yuan L, Zheng J, Huang H, Chen SQ, Xiao ZW, Wang HB, Roy G, Zhong Q, Lin D, Zeng YX, Wang J, Zhao B, Gewurz BE, Chen J, Zuo Z, and Zeng MS (2021). N(6)-methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Reports e50128.
  8. Sun X*, Ren Z*, Cun Y, Zhao C, Huang X, Zhou J, Hu R, Su X, Ji L, Li P, Mak KLK, Gao F, Yang Y, Xu H, Ding J, Cao N, Li S, Zhang W, Lan P, Sun H, Wang J #, Yuan P # (2020). Hippo-YAP signaling controls lineage differentiation of mouse embryonic stem cells through modulating the formation of super-enhancers. Nucleic Acids Research 48(13):7182-7196. (IF=19.2)
  9. An S*, Huang W*, Huang X*, Cun Y, Cheng W, Sun X, Ren Z, Chen Y, Chen W, Wang J#. (2020). Integrative network analysis identifies cell-specific trans regulators of m6A. Nucleic Acids Research  48(4):1715-1729. (IF=19.2) (BioArtMED 报道
  10. Shi J, Deng Y, Huang S, Huang C, Wang J, Xiang AP, and Yao C (2019). Suboptimal RNA-RNA interaction limits U1 snRNP inhibition of canonical mRNA 3' processing. RNA Biology 16(10): 1448-1460.
  11. Li F, Yi Y, Miao Y, Long W, Long T, Chen S, Cheng W, Zou C, Zheng Y, Wu X, Ding J, Zhu K, Chen D, Xu Q, Wang J, Liu Q, Zhi F, Ren J, Cao Q, and Zhao W (2019). N(6)-Methyladenosine Modulates Nonsense-Mediated mRNA Decay in Human Glioblastoma. Cancer Research 79(22): 5785-5798.
  12. Zhou C*, Molinie B*, Daneshvar K, Pondick JV, Wang J, Wittenberghe NV, Xing Y, Giallourakis CC#, Mullen AC#. (2017). Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns that Are Distinct from mRNAs. Cell Reports, 20(9), 2262–2276.  (IF=9.4)
  13. Wang J, Pan Y, Shen S, Lin L, Xing Y#. (2017). rMATS-DVR: rMATS discovery of Differential Variants in RNA. Bioinformatics 33(14), 2216-2217.  (IF=6.9)
  14. Molinie B*, Wang J*, Lim KS, Hillebrand R, Lu ZX, Wittenberghe NV, Howard BD, Daneshvar K, Mullen AC, Dedon P, Xing Y#, Giallourakis CC#. (2016) m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nature Methods, 13(8):692-698. (IF=28.5)  
  15. Batista PJ*, Molinie B*, Wang J*, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K, Carter AC, Flynn RA, Zhou C, Lim KS, Dedon P, Wernig M, Mullen AC, Xing Y#, Giallourakis CC#, Chang HY# (2014) m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15(6): 707–719. (IF=24.6)
  16. Wang J*, Lu ZX*, Tokheim C, Miller SE, Xing Y#. (2015) Species-specific exon loss in human transcriptomes. Molecular Biology and Evolution 32(2): 481-94. (IF=16.2)
  17. Lin L*#, Jiang P*, Park JW*, Wang J*, Lu ZX, Lam MPY, Ping P, Xing Y#. (2016) The contribution of Alu exons to the human proteome.Genome Biology 28;17(1):15  (IF=13.6) 
  18. Wang J*, Ma MCJ*, Mennie AK*, Pettus JM, Xu Y, Lin L, Traxler MG, Jakoubek J, Atanur SS, Aitman TJ, Xing Y#, Kwitek AE#. (2015) Systems biology with high-throughput sequencing reveals genetic mechanisms underlying the metabolic syndrome in the Lyon hypertensive rat. Circulation: Cardiovascular Genetics 8(2):316-326.
  19. Zhao Y*, Ji S*, Wang J*, Huang J#, Zheng P# (2014) mRNA-Seq and microRNA-Seq whole-transcriptome analyses of rhesus monkey embryonic stem cell neural differentiation revealed the potential regulators of rosette neural stem cells. DNA Research 21(5): 541–554. 
  20. Li M*, Huang L*, Wang J*, Su B#, Luo X-J# (2016) No association between schizophrenia susceptibility variants and macroscopic structural brain volume variation in healthy subjects. Am J Med Genet B Neuropsychiatr Genet.  171B(2):160-8. 
  21. Wang J*, Cao X*, Zhang Y, Su B#. (2012) Genome-wide DNA methylation analyses in the brain reveal four differentially methylated regions between humans and non-human primates. BMC evolutionary biology 12(1): 144.
  22. Wang J, Li Y, Su B#. (2008) A common SNP of MCPH1 is associated with cranial volume variation in Chinese population. Human Molecular Genetics 17(9): 1329-1335. 
  23. Li M, Huang L, Li K, Huo Y, Chen C, Wang J, Liu J, Luo Z, Chen C, Dong Q, Yao YG, Su B, Luo XJ#. (2016) Adaptive evolution of interleukin-3 (IL3), a gene associated with brain volume variation in general human populations.  Human Genetics. 135(4):377-92. 
  24. Luo X-J, Li M, Huang L, Nho K, Deng M, ... Wang J, … Su B#. (2012) The Interleukin 3 Gene (IL3) Contributes to Human Brain Volume Variation by Regulating Proliferation and Survival of Neural Progenitors. PLoS ONE 7: e50375.
  25. Kim J, Zhao K, Jiang P, Lu ZX, Wang J, Murray JC, Xing Y#. (2012) Transcriptome landscape of the human placenta. BMC genomics 13: 115. 
  26. Niu AL, Wang YQ, Zhang H, Liao CH, Wang J, Zhang R, Che J, Su B#. (2011) Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function. BMC evolutionary biology 11: 298. 
  27. Luo XJ, Diao HB, Wang J, Zhang H, Zhao ZM and Su B#. (2008) Association of haplotypes spanning PDZ-GEF2, LOC728637 and ACSL6 with schizophrenia in Han Chinese. J Med Genet, 45(12), 818-826.
  28. Zhou L, Wang J, Yi Q, Wang YZ, Zhu YG and Zhang ZH#. (2007) Quantitative trait loci for seedling vigor in rice under field conditions. Field Crop Res 100: 294-301.