个人简介

现任博彩公司排名-博彩公司评级 教授,博士生导师,基金委优秀青年科学基金(2021)和国家高层次引进人才青年项目获得者(2017),国家重点研发计划青年首席科学家(2018),广东省医学领军人才(2018)。2007年于武汉大学生命科学学院获得学士学位;2012年于中科院上海生命科学研究院获得细胞生物学博士学位;于2012年起在美国加州大学旧金山分校戴维•格拉斯通研究所(J. David Gladstone Institutes)从事博士后研究。2017年获聘中山大学引进人才。
主要从事心血管细胞命运调控机理研究及心脏再生修复新策略/药物研发。以第一/通讯作者(含共同)发表研究论文19篇,刊登在Science、Cell Metabolism、Nat Biomed Eng.、Cell Stem Cell、Cell Res. (3篇)、ACS Nano、Adv Sci. (3篇)、Circ Res.、Nat Commun.、Cell Rep.等,平均 IF:21.8/篇。申请/获授权国际PCT专利4项、美国专利2项、及中国发明专利7项。

学术成果

重要学术研究成果与贡献

心脏疾病是人类健康的第一杀手。缺血性心脏病患者的心脏细胞在疾病发生后大量死亡并且不可自然再生,导致患者心功能逐渐恶化,并最终发展成为终末期心脏病和心力衰竭。深入理解心脏再生修复的调控机制,促进心梗后丧失的心肌细胞恢复成为心脏再生医学的主要研究目标。课题组多年专注于心血管细胞命运调控机理研究及其在治疗缺血性心脏病中的应用,取得了一系列重要的研究成果。利用干细胞和化学生物学手段,首次将皮肤细胞直接重编程成为了新型心血管祖细胞和心肌细胞,改善梗死心脏功能(Nat Biomed Eng. 2022; Science 2016; Cell Stem Cell 2016);建立心脏靶向给药系统,揭示鞘磷脂代谢、溶酶体活性、及心肌搏动节律在心脏损伤修复中的重要作用(Cell Metab. 2024; ACS Nano 2023; Cell Rep. 2022; Circ Res. 2020);系统评估了新冠疫苗和治疗药物的心脏毒性并筛选研发了相应保护药物(Adv Sci. 2022; Commun Biol. 2022);建立了多个多能干细胞向心血管(祖)细胞分化体系,深入阐明了RNA m6A修饰、蛋白质稳态、及细胞外基质在心脏细胞发育中的作用(Adv Sci. 2023; Nat Commun. 2022; Adv Sci. 2021; Stem Cells 2019; Cell Res. 2011; 2012; 2013);建立首个心血管祖细胞规模化扩增体系并应用其进行梗死心脏修复(Cell Res. 2013;Cell Stem Cell 2016)。开发的心血管细胞诱导和培养技术已被经典教科书 Methods in Molecular Biology收录。研究成果入选两院院士评选的世界十大科技进展并获得2020年国家科学技术进步奖二等奖。获得中国细胞生物学学会2022年干细胞卓越青年研究员奖。

一系列工作得到了科学和公众媒体的广泛关注,被包括 ABC News, Voice of America, News USA, Yahoo News, Science Daily, Science News, 生物谷, 丁香园等40余家国际国内媒体相继报道,获评ESI高被引论文并获得F1000推荐。多位专家在Nature、Cell Stem Cell、Circ Res.等著名期刊对上述成果发表了专门评述。主持国家重点研发计划、国家高层次引进人才青年项目、国家自然科学基金优青及重大研究计划等多项国家级科研项目。

教材专著

Peer-Reviewed Research Articles (Corresponding or First Authors)

  1. Ji X#, Chen Z#, Wang Q#, Li B, Wei Y, Li Y, Lin J, Cheng W, Guo Y, Wu S, Mao L, Xiang Y, Lan T, Gu S, Wei M, Zhang JZ, Jiang L, Wang J, Xu J, Cao N*. Sphingolipid metabolism controls mammalian heart regeneration. Cell Metab. 2024 Feb 7:S1550-4131(24)00017-2. (IF: 29.0/Q1).
  2. Xu H#, You H#, Gong J#, Zhang Y#, Du J, Wang X, Gu S, Cao N*, Wang J*. Discovery of Zidovudine as a cardiomyocyte protectant for doxorubicin-induced toxicity through high-throughput phenotypic drug screening. Fundamental Res. 2023 Nov 19 doi.org/10.1016/j.fmre.2023.10.010. (IF: 6.2/Q1).
  3. Liu F#, Liu Z#, Cheng W#, Zhao Q#, Zhang X, Zhang H, Yu M, Xu H, Gao Y, Jiang Q, Shi G, Wang L, Gu S, Wang J, Cao N*, Chen Z*. The PERK Branch of the Unfolded Protein Response Safeguards Protein Homeostasis and Mesendoderm Specification of Human Pluripotent Stem Cells. Adv Sci. 2023 Oct 27:e2303799. (IF: 17.5/Q1).
  4. Liu X#, Liu Z#, Ren Z, Chen H, Zhang Y, Zhang Z*, Cao N*, Luo G*. Co-effects of m6A and chromatin accessibility dynamics in the regulation of cardiomyocyte differentiation. Epigenetics Chromatin. 2023 Aug 11;16(1):32. (IF: 5.5/Q1)
  5. Ji X#, Meng Y#, Wang Q#, Tong T#, Liu Z, Lin J, Li B, Wei Y, You X, Lei Y, Song M, Wang L, Guo Y, Qiu Y, Chen Z, Mai B, Xie S*, Wu J*, Cao N*. Cysteine-based redox-responsive nanoparticles for fibroblast-targeted drug delivery in the treatment of myocardial infarction. ACS Nano 2023 Mar 28;17(6):5421-5434. (IF: 18.0/Q1).
  6. Wang J#*, Wang Q, Cao N*. Generation of expandable cardiovascular progenitor cells from mouse and human fibroblasts via direct chemical reprogramming. STAR Protoc. 2022 Dec 16;3(4):101908.
  7. Xu H#, Liu G #, Gong J#, Zhang Y#, Gu S#, Wan Z, Yang P, Nie Y, Wang Y, Huang Z, Luo G, Chen Z*, Zhang D*, Cao N*. Investigating and Resolving Cardiotoxicity Induced by COVID-19 Treatments Using Human Pluripotent Stem Cell-Derived Cardiomyocytes and Engineered Heart Tissues. Adv Sci. 2022 Sep 2;e2203388. (IF: 17.5/Q1).
  8. Gu S#, Chen Z#, Meng X#, Liu G#, Xu H#, Huang L, Wu L, Gong J, Chen D, Xue B, Zhu L, Wan Z, Lin J, Cai X, Zhang X, Wang J, Zhang D*, Cao N*. Spike-based adenovirus vectored COVID-19 vaccine does not aggravate heart damage after ischemic injury in mice. Commun Biol. 2022 Sep 2;5(1):902. (IF: 6.5/Q1).
  9. Wang J#, Gu S#, Liu F, Chen ZH, Xu H, Liu Z, Cheng W, Wu L, Xu T, Chen ZY, Chen D, Chen X, Zeng F, Zhao Z, Zhang M, Cao N*. Reprogramming of fibroblasts into expandable cardiovascular progenitor cells via small molecules in xeno-free conditions. Nat Biomed Eng. 2022 Apr;6(4):403-420. (IF: 29.2/Q1).
  10. Tan J#, Yang M#, Wang H, Shen C, Wu M, Xu H, Wu Y, Li Y, Li X, Huang T, Deng S, Yang Z, Gao S, Li H, Zhou J, Chen H*, Cao N*, Cai W*. Moderate heart rate reduction promotes cardiac regeneration through stimulation of the metabolic pattern switch. Cell Rep. 2022 Mar 08;38(10):110468 (IF: 10.0/Q1).
  11. Cheng W#, Liu F#, Ren Z, Chen W, Chen Y, Liu T, Ma Y, Cao N*, Wang J*. Parallel functional assessment of m6A sites in human endodermal differentiation with base editor screens. Nat Commun. 2022 Jan 25;13(1):478 (Featured articles, IF: 17.7/Q1).
  12. Chen X#, Zhao Q#, Zhao Y#, Chai G, Cheng W, Zhao Z, Wang J*, Luo G*, Cao N*. Targeted RNA N6-Methyladenosine Demethylation Controls Cell Fate Transition in Human Pluripotent Stem Cells. Adv Sci. 2021 Jun;8(11): e2003902. (IF: 17.5/Q1).
  13. Gu S, Tan J, Li Q, Liu S, Ma J, Zheng Y, Liu J, Bi W, Sha P, Li X, Wei M, Cao N*, Yang HT*. Downregulation of LAPTM4B Contributes to the Impairment of the Autophagic Flux via Unopposed Activation of mTORC1 Signaling During Myocardial Ischemia/Reperfusion Injury. Circ Res. 2020 Sep 11;127(7):e148-e165 (IF: 23.2/Q1).
  14. Han Z, Yu Y, Xu J, Bao Z, Xu Z, Hu J, Yu M, Bamba D, Ma W, Ding F, Zhang L, Jin M, Yan G, Huang Q, Wang X, Hua B, Yang F, Li Y, Lei L, Cao N*, Pan Z*, Cai B*. Iron Homeostasis Determines Fate of Human Pluripotent Stem Cells Via Glycerophospholipids-Epigenetic Circuit. Stem Cells. 2019 Apr;37(4):489-503 (IF: 5.8/Q1).
  15. Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, Nie B, Xie M, Zhang M, Wang H, Ma T, Xu T, Shi G, Srivastava D, Ding S*. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 2016 Jun 3;352(6290):1216-20 (IF: 63.7/Q1).
  16. Zhang Y#, Cao N#, Huang Y, Spencer CI, Fu JD, Yu C, Liu K, Nie B, Xu T, Li K, Xu S, Bruneau BG, Srivastava D, Ding S*. Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell 2016 Mar 3;18(3):368-81 (IF: 25.3/Q1) (Featured article).
  17. Cao N, Liang H, Yang HT*. Generation, expansion, and differentiation of cardiovascular progenitor cells from human pluripotent stem cells. Methods Mol Biol. 2015; 1212:113-25 (Book chapter).


Review Articles

  1. Zeng N#, Tang W#, Wu Y, Fan H, Xie S*, Cao N*. Harnessing stem cell and lineage reprogramming technology to treat cardiac fibrosis. Cell Regen. 2023 Dec 11;12(1):39.
  2. Huang L#, Wang Q#, Gu S, Cao N*. Integrated metabolic and epigenetic mechanisms in cardiomyocyte proliferation. J Mol Cell Cardiol. 2023 Jun 16:S0022-2828(23)00103-7 (IF: 5.8/Q1).
  3. Liu G, Fu J, Cao N*. Chemical evocation of human cell plasticity—twist of cell fates by small molecules. Life Med. 2022 Jun 28;lnac010, /doi.org/10.1093/lifemedi/lnac010.
  4. Li G#, Liu Z#, Cao N*. Human pluripotent stem cell–based cardiovascular disease modeling and drug discovery. Pflug Arch. 2021 Jul;473(7):1087-1097 (IF: 4.5/Q2).
  5. Li Q#, Wang J#, Wu Q, Cao N*, Yang HT*. Perspective on human pluripotent stem cell-derived cardiomyocytes in heart disease modeling and repair. Stem Cell Transl Med. 2020 Oct;9(10):1121-1128. (IF: 7.7/Q1).
  6. Tang S, Xie M, Cao N, Ding S*. Patient-specific induced pluripotent stem cells for disease modeling and phenotypic drug discovery. J Med Chem. 2016 Jan 14;59(1):2-15 (IF: 8.0/Q1).
  7. Xie M#, Cao N#, Ding S*. Small molecules for cell reprogramming and heart repair: progress and perspective. ACS Chem Biol. 2014 Jan 17;9(1):34-44 (IF: 4.6/Q2).
  8. Cao N#, Liang H#, Huang J, Wang J, Chen Y, Chen Z, Yang HT*. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 2013 Sep;23(9):1119-32 (IF: 46.3/Q1).
  9. Cao N, Liu Z, Chen Z, Wang J, Chen T, Zhao X, Ma Y, Qin L, Kang J, Wei B, Wang L, Jin Y, Yang HT*. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res. 2012 Jan;22(1):219-36 (IF: 46.3/Q1).
  10. Cao N#, Liao J#, Liu ZM, Zhu WM, Wang J, Liu LJ, Yu LL, Xu P, Cui C, Xiao L, Yang HT*. In vitro differentiation of rat embryonic stem cells into functional cardiomyocytes. Cell Res. 2011 Sep;21(9):1316-31 (IF: 46.3/Q1).

Peer-Reviewed Research Articles (Contributing Authors)

  1. Liu J, Wang H, Xu D, Li Y, Fang J*, Zhang M, Xia Q, Huang Z, Cao N, Hu N*, Guo J*. High-throughput rhythmic regulation of cardiomyocytes by integrated electrical stimulation and video-based automated analysis biosensing platform. Biosens Bioelectron. 2022 Aug 1; 209:114252 (IF: 12.5).
  2. Xu D, Fang J, Yadid M, Zhang M, Wang H, Xia Q, Li H, Cao N, Dvir T, Hu N*. A universal, multimodal cell-based biosensing platform for optimal intracellular action potential recording. Biosens Bioelectron. 2022 Feb 25; 206:114122 (IF: 12.5).
  3. Zhang M, Xu D, Fang J, Li H, Li Y, Liu C, Cao N, Hu N*. A dynamic and quantitative biosensing assessment for electroporated membrane evolution of cardiomyocytes. Biosens Bioelectron. 2022 Jan 20; 202:114016 (IF: 12.5).
  4. Peng Z, Wu J, Hu S, Ma A, Wang L, Cao N, Zhang Y, Li Q, Yu J, Meng S, Na T, Shi X, Li M, Liu H, Qian L, Tian E, Lin F, Cao J, Peng Y, Zhu H, Liang L, Hao J, Zhao T, Cheng X*, Pan G*. Requirements for primary human hepatocyte. Cell Prolif. 2021 Dec 22: e13147 (IF: 8.8).
  5. Liu Z#, Xu D#, Fang J#, Xia Q, Zhong W, Li H, Huang Z, Cao N, Liu X*, Chen HJ*, Hu N*. Intracellular Recording of Cardiomyocytes by Integrated Electrical Signal Recording and Electrical Pulse Regulating System. Front Bioeng Biotechnol. 2021 Dec 15; 9:799312 (IF: 6.1).
  6. Yu M, Lei W, Cao J, Wang L, Ma A, Zhao ZA, Yang HT, Shen Z, Lan F, Cao F, Liang P, Pei X, Xiang AP, Yu J, Zhang Y, Zhang Y, Li Q, Zhou J, Wei J, Peng Y, Zhu H, Liang L, Cao N, Fu B, Hao J*, Zhao T*, Hu S*. Requirements for human cardiomyocytes. Cell Prolif. 2021 Oct 27:e13150 (IF: 8.8).
  7. Tan L#, Cheng W#, Liu F, Wang DO, Wu L, Cao N, Wang J*. Positive natural selection of N6-methyladenosine on the RNAs of processed pseudogenes. Genome Biol. 2021 Jun 13;22(1):180 (IF: 17.9).
  8. Li M, Huang H, Li L, He C, Zhu L, Guo H, Wang L, Liu J, Wu S, Liu J, Xu T, Mao Z, Cao N, Zhang K, Lan F, Ding J, Yuan J, Liu Y*, Ouyang H*. Core transcription regulatory circuitry orchestrates corneal epithelial homeostasis. Nat Commun. 2021 Jan 18;12(1):420 (IF: 17.7).
  9. Sun X, Ren Z, Cun Y, Zhao C, Huang X, Zhou J, Hu R, Su X, Ji L, Li P, Mak KLK, Gao F, Yang Y, Xu H, Ding J, Cao N, Li S, Zhang W, Lan P, Sun H, Wang J*, Yuan P*. Hippo-YAP signaling controls lineage differentiation of mouse embryonic stem cells through modulating the formation of super-enhancers. Nucleic Acids Res. 2020 Jul 27;48(13):7182-7196 (IF: 19.2).
  10. Wang B#, Wang L#, Gu S, Yu Y, Huang H, Mo K, Xu H, Zeng F, Xiao Y, Peng L, Liu C, Cao N, Liu Y, Yuan J*, Ouyang H*. D609 protects retinal pigmented epithelium as a potential therapy for age-related macular degeneration. Signal Transduct Target Ther. 2020 Mar 4;5(1):20 (IF: 38.1).
  11. Hu JL#, Liang H#, Zhang H, Yang MZ, Sun W, Zhang P, Luo L, Feng JX, Bai H, Liu F, Zhang T, Yang JY, Gao Q, Long Y, Ma XY, Chen Y, Zhong Q, Yu B, Liao S, Wang Y, Zhao Y, Zeng MS, Cao N, Wang J, Chen W*, Yang HT*, Gao S*. FAM46B is a prokaryotic-like cytoplasmic poly(A) polymerase essential in human embryonic stem cells. Nucleic Acids Res. 2020 Mar 18;48(5):2733-2748 (IF: 19.2).
  12. Liu C, Hu X, Li Y, Lu W, Li W, Cao N, Zhu S, Cheng J, Ding S*, Zhang M*. Conversion of mouse fibroblasts into oligodendrocyte progenitor-like cells through a chemical approach. J Mol Cell Biol. 2019 Jan 10 (IF: 8.2).
  13. Chen ZY, Chen F, Cao N, Zhou ZW, Yang HT*. miR-142-3p contributes to early cardiac fate decision of embryonic stem cells. Stem Cells Int. 2017; 2017:1769298 (IF: 5.1).
  14. Xu T, Stewart K, Wang X, Liu K, Xie Min, Ryu JK, Li K, Ma T, Wang H, Ni L, Zhu S, Cao N, Don W, Zhang Y, Akassoglou K, Dong C*, Driggers EM*, Ding S*. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 2017 Aug 10;548(7666):228-233 (IF: 69.5).
  15. Zhang M, Lin YH, Sun YJ, Zhu S, Zheng J, Liu K, Cao N, Li K, Huang Y, Ding S*. Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell 2016 May 5;18(5):653-67 (IF: 25.3).
  16. Ma T, Li J, Xu Y, Yu C, Xu T, Wang H, Liu K, Cao N, Nie B, Zhu S, Xu S, Li K, Wei W, Wu Y, Guan K, Ding S*. Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat Cell Biol. 2015 Nov;17(11):1379-87 (IF: 28.2).
  17. Wang H, Cao N, Spencer CI, Nie B, Ma T, Xu T, Zhang Y, Wang X, Srivastava D, Ding S*. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Rep. 2014 Mar 13;6(5):951-60 (IF: 10.0).
  18. Wang J, Cao N, Yuan M, Cui HJ, Tang Y, Qin LJ, Huang XF, Shen N, Yang HT*. MicroRNA-125b/Lin28 pathway contributes to the mesendodermal fate decision of embryonic stem cells. Stem Cells Dev. 2012 Jun 10;21(9):1524-37 (IF: 4.4).
  19. Liang J, Wang YJ, Tang Y, Cao N, Wang J, Yang HT*. Type 3 inositol 1,4,5-trisphosphate receptor negatively regulates apoptosis during mouse embryonic stem cell differentiation. Cell Death Differ. 2010 Jul;17(7):1141-54 (IF: 12.1).